
SODA: An End-To-End Open-Source Hardware
Compiler for Machine Learning Accelerators

Nicolas Bohm Agostini†‡, Serena Curzel§‡, Ankur Limaye‡, Vinay Amatya‡, Marco Minutoli‡,
Vito Giovanni Castellana‡, Joseph Manzano‡, Fabrizio Ferrandi§, Antonino Tumeo‡

‡Pacific Northwest National Laboratory, Richland, WA, USA
†Northeastern University, Boston, MA, USA

§Politecnico di Milano, Milan, Italy

I. INTRODUCTION

Modern scientific experimental workflows are diverse (e.g.,
environmental monitoring, high energy physics, materials syn-
thesis), but all require specialized processing at the edge, near
the sensors, to deal with the enormous amount of acquired
data and perform low latency reasoning to enable autonomous
control. Nowadays, designing and implementing specialized
systems needs large teams of expert hardware designers, and
is economically viable only for solutions that have broad com-
mercial applications. The conventional process for designing
specialized systems consists in identifying common computa-
tional patterns to accelerate, and developing highly customized
accelerators for these patterns at the register transfer-level
(RTL), considering all possible trade-offs in terms of energy,
performance, area, energy, and more, depending on the specific
application domain. This becomes impractical for areas such as
data science, machine learning (ML), and artificial intelligence
(AI), where algorithmic approaches and programming frame-
works keep evolving at a fast pace, rendering previous methods
quickly obsolete. A new generation hardware design tools that
allow to transition from the formulation of the algorithms to
the implementation of a domain-specific system is required.

The SODA (Software Defined Architectures) Synthe-
sizer [1] aims to bridge this productivity gap. The SODA
Synthesizer is an open-source, modular, and extensible end-
to-end hardware compiler for the generation of specialized
systems from algorithms specified in high-level programming
frameworks. It is composed of a compiler-based frontend,
which interfaces to ML and AI frameworks and applies high-
level optimizations, and a compiler-based backend, which
generates RTL code and interfaces to physical design tools
that produce the final implementation for field programmable
gate arrays (FPGAs) or application-specific integrated circuits
(ASICs). The frontend, SODA-OPT [2], available at: https:
//gitlab.pnnl.gov/sodalite/soda-opt, is implemented with the
MLIR framework. The backend, PandA- Bambu [3], leverages
state-of-the-art High-Level Synthesis (HLS) techniques and is
available at: https://panda.dei.polimi.it.

II. SODA SYNTHESIZER OVERVIEW

The SODA Synthesizer is composed of two main parts: the
frontend and the hardware generation engine. The framework
accepts input descriptions from high-level Python frameworks,

Translate to MLIR IR

Backend: 
HLS

Frontend: 
SODA-OPT

Synthesizer

Design 
Space 

Exploration

Templates

Components

FPGA or ASIC Targets

Constraints

Resource Library

Metrics

High-Level 
Framework ML Model

Chip Design

DSL

Evaluation

Executable

Processor

LLVM 
Tools

Fig. 1: The SODA Synthesizer.

translated by the frontend into a high-level intermediate repre-
sentation (IR). The frontend exploits the Multi-Level Interme-
diate Representation (MLIR) [4] to perform hardware/software
partitioning of the algorithm specifications, and architecture-
independent optimizations. Subsequently, it generates a low-
level IR (LLVM IR) for the HLS engine Bambu. A key
difference between SODA and other frameworks that use HLS
is that the interaction between frontend and backend hap-
pens through specialized compiler intermediate representations
(IRs) and their progressive lowerings, allowing to perform
optimizations at the right level of abstraction, and to pursue
new research opportunities. Optimizations at all levels of the
toolchain are implemented as compiler passes, which impact
the generated hardware designs in terms of performance, area,
and power. The exploration of the design space is made
possible by enabling and disabling compiler passes or tuning
their options through Python bindings.

A. SODA-OPT Frontend

SODA-OPT performs search, outlining, optimization, dis-
patching, and acceleration passes on the input program,
preparing it for hardware synthesis. It leverages and extends
MLIR. MLIR is a framework that allows building reusable,

https://gitlab.pnnl.gov/sodalite/soda-opt
https://gitlab.pnnl.gov/sodalite/soda-opt
https://panda.dei.polimi.it


Kernel No Optimizations Optimizations SpeedupCycles Area(umˆ2) GF/W Cycles Area(umˆ2) GF/W
CONV 01 10,262,618 29,073 4.43 4,627,982 124,255 2.68 2.22
BIAS 02 251,694 10,395 11.48 40,826 60,048 9.01 6.17
RELU 03 151,342 7,385 41.55 38,446 35,695 38.39 3.94
CONV 04 85,380,948 36,814 3.32 83,380,180 37,556 3.34 1.02
BIAS 05 62,932 10,409 11.00 10,222 60,007 8.41 6.16
RELU 06 37,844 7,464 41.75 9,620 35,950 37.04 3.93

TABLE I: Evaluation of non optimized and optimized LeNet operators in ASIC technology (FreePDK 45 nm at 500 MHz)

extensible, and modular compiler infrastructure by defining
dialects, i.e., self-contained IRs that respect MLIR’s meta-IR
syntax. Dialects allow modeling code at different levels of ab-
straction, enabling the use of specialized representations to fa-
cilitate compiler optimizations. These include abstractions for
linear algebra, polyhedral analysis, structured control flow, and
others. Several high-level programming frameworks for vari-
ous domains such as machine learning (TensorFlow, ONNX-
MLIR, TORCH-MLIR), scientific computing (NPCOMP), and
general-purpose languages (e.g., the FLANG frontend for
Fortran) started leveraging MLIR to implement their own
specific dialects, optimization passes, and lowering methods
to translate their programs into built-in MLIR dialects. Built-
in dialects are entry points to SODA, enabling high-level
programming frameworks to integrate with our toolchain.

SODA-OPT passes ingest MLIR inputs from high-level
frameworks, identify key code regions, and outline them
into separate MLIR modules, introducing a custom dialect to
partition input applications into an orchestrating host program
and custom hardware accelerators. Code regions that are
selected for hardware acceleration undergo an optimization
pipeline with progressive lowerings through different MLIR
dialects, until they are translated into an LLVM IR restructured
for hardware synthesis. Instead, the host module is lowered
into an LLVM IR file that includes runtime calls to control
the generated custom accelerators. Traditional HLS design
flows expect manual code modifications that restructure the
original algorithm (to create internal buffers or apply profitable
tiling strategies) or tool-specific pragma annotations (to guide
unrolling or provide alias information). Instead, SODA-OPT
exploits dedicated and context-specific MLIR dialects to apply
systematic high-level transformations.

B. SODA Synthesizer Backend

Bambu generates the accelerator designs starting from the
low-level LLVM IR produced by SODA-OPT. Bambu has sev-
eral frontends based on standard compilers (GCC or CLANG),
it builds an internal IR to perform HLS steps (including
bitwidth analysis, loop optimizations, resource allocation,
scheduling, and binding algorithms), and generates the de-
signs in a hardware description language (Verilog or VHDL).
Alongside synthesizable HDL, it also automatically produces
testbenches for verification. Bambu enables SODA to target
FPGAs (from Xilinx, Altera, Lattice, NanoXplore) and ASICs.
For ASICs, SODA supports Verilog-to-GDSII generation with
both commercial and open-source logic synthesis tools.

Bambu is optimized to support a wide set of C and C++
constructs, but it can also ingest LLVM IR through its internal
Clang frontend; through SODA-OPT, we connect Bambu with
MLIR code. The LLVM IR generated after SODA-OPT high-
level optimizations is restructured for HLS, resulting in more
efficient accelerators with respect to inputs directly translated
from MLIR to LLVM IR.

Bambu produces RTL designs following the finite state
machine with datapath (FSMD) model; the accelerators can
subsequently be integrated in larger system-level designs, with
or without microcontrollers driving the execution. Bambu
also exposes modular synthesis methodologies [5]: differently
from other HLS tools, it can generate modules representing
functions that may be reused or replicated across an entire
design and composed in a complex multi-accelerator system.

We have extended Bambu with new HLS methodologies
that can integrate FSMD modules as processing elements in
coarse-grained dataflow designs [6], and in high-throughput,
dynamically scheduled, multithreaded parallel templates [7].
MLIR descriptions are naturally parallel and hierarchical, so
it is practical to instantiate such architectural templates from
SODA-OPT: rather than requiring manual annotations on the
input code, we can define the design hierarchy at a higher
level of abstraction by exploiting MLIR.

III. END-TO-END EXAMPLE

Fig. 2: ASIC implementations of LeNet layers.

To demonstrate SODA end-to-end synthesis capabilities, we
automatically translate a LeNet model trained in TensorFlow
to the linalg dialect and employ SODA-OPT to search,
outline, and optimize different regions of the network, then



generating different specialized accelerators with Bambu. Ta-
ble I reports the evaluation of the SODA implementations of
different layers from the LeNet convolutional neural network
model, synthesized with the OpenROAD flow targeting the
FreePDK 45 nm cell library and a frequency of 500 MHz.
For these layers, we also obtained floorplans in standard
GDSII format, shown in Figure 2. All accelerators employ 32-
bit floating point units. Optimizations provide a performance
increase (speedup) proportional to the increase in area. Power
efficiency (GF/W) may slightly reduce due to increase in
power consumption of the faster solutions.

IV. CONCLUSION

The modern experimental workflow requires domain-
specialized systems at the edge and on the instruments to
enable low latency data analytics, reasoning, and autonomous
control. However, the conventional hardware design flow re-
quires significant efforts from large teams of expert hardware
designers. We provided an overview of the SODA Synthesizer,
an open-source compiler toolchain that enables automated
generation of domain specialized systems from high-level pro-
gramming frameworks to silicon, that aims to bridge the design
productivity gap. The toolchain is composed of a frontend that
interfaces with high-level programming frameworks and per-
forms high-level optimizations, and a backend based on state-
of-the-art HLS techniques to generate the RTL description of
custom accelerators. SODA interfaces to open-source logic
synthesis and physical layout tools to generate chip designs,
providing an end-to-end solution for agile hardware design.

REFERENCES

[1] N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya,
M. Minutoli, V. G. Castellana, J. Manzano, D. Brooks, G.-Y. Wei, and
A. Tumeo, “Bridging Python to Silicon: The SODA Toolchain,” IEEE
Micro, pp. 1–1, 2022.

[2] N. Bohm Agostini, S. Curzel, C. Amatya, Vinay Tan, , M. Minutoli,
V. G. Castellana, J. Manzano, D. Kaeli, and A. Tumeo, “An MLIR-based
Compiler Flow for System-Level Design and Hardware Acceleration,” in
ICCAD 2022, 2022, p. to appear.

[3] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lat-
tuada, M. Minutoli, C. Pilato, and A. Tumeo, “Bambu: an open-source
research framework for the high-level synthesis of complex applications,”
in DAC 2021, 2021, pp. 1327–1330.

[4] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation,” in CGO, 2021,
p. 2–14.

[5] M. Minutoli, V. G. Castellana, A. Tumeo, and F. Ferrandi, “Inter-
procedural resource sharing in high level synthesis through function
proxies,” in FPL 2015, 2015, pp. 1–8.

[6] V. G. Castellana, A. Tumeo, and F. Ferrandi, “High-level synthesis of
parallel specifications coupling static and dynamic controllers,” in IPDPS
’21: IEEE International Parallel and Distributed Processing Symposium,
2021, pp. 192–202.

[7] M. Minutoli, V. Castellana, N. Saporetti, S. Devecchi, M. Lattuada,
P. Fezzardi, A. Tumeo, and F. Ferrandi, “Svelto: High-Level Synthesis
of Multi-Threaded Accelerators for Graph Analytics,” IEEE Transactions
on Computers, no. 01, pp. 1–14, 2021.


	Introduction
	SODA Synthesizer Overview
	SODA-OPT Frontend
	SODA Synthesizer Backend

	End-to-end Example
	Conclusion
	References

