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Executive Summary
 Inference on edge devices is stressing accelerator capabilities

• We think of neural network (NN) models as computationally-intensive
• Edge NN model footprints exceeding the limited storage of accelerators
• We show this with a detailed characterization of Google edge NN models

Processing-in-memory can come to the rescue!
• New memory capabilities can overcome memory channel bottlenecks
• Variants: processing-near-memory (PNM), processing-using-memory (PUM)

Mensa-G: heterogeneous edge NN accelerators using PNM
• 3.1x performance, 3.0x energy improvement vs. Google Edge TPU
• Full paper: Boroumand+ PACT 2021

RACER: data accelerator for edge computing using PUM
• 107x performance, 189x energy improvement vs. 16-core Intel Xeon
• Full papers: Truong+ MICRO 2021, Truong+ JETCAS 2022
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Why Do Machine Learning (ML) on Edge Devices?

Significant interest in pushing ML inference computation 
directly to edge devices

Privacy LatencyConnectivity Bandwidth
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Why Build Specialized ML Accelerators?

Edge devices have limited battery and computation budgets

Limited Power Budget Limited Computational Resources

Specialized accelerators can significantly improve 
inference latency and energy consumption

Apple Neural Engine (A12) Google Edge TPU
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Myriad of Edge Neural Network Models

Challenge: edge ML accelerators have to execute inference 
efficiently across a wide variety of NN models

Face Detection

Speech Recognition

Image Captioning

Language Translation
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Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts
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Edge TPU: Baseline Accelerator
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Google Edge NN Models
We analyze inference execution using 24 edge NN models

Face Detection

Speech Recognition Language Translation

Image Captioning

Google Edge TPU
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The Edge TPU Suffers From Three Major Challenges
1. It operates significantly below its peak throughput

2. It operates significantly below its peak 
energy efficiency

3. It handles memory accesses inefficiently
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Challenge 1: High Resource Underutilization

We find that the accelerator operates significantly below 
its peak throughput across all models
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Challenge 2: Low Energy Efficiency

The accelerator operates far below 
its upper bound energy efficiency
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Challenge 3: Inefficient Memory Access Handling 
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Parameter traffic (off-chip and on-chip) takes 
a large portion of the inference energy and execution time

46% and 31% of total energy goes to off-chip parameter traffic
and distributing parameters across the PE arrays
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The Edge TPU Suffers From Three Major Challenges
1. It operates significantly below its peak throughput

2. It operates significantly below its peak 
energy efficiency

3. It handles memory accesses inefficiently
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Diversity Across the Models
Insight 1: there is significant variation in terms of 

layer characteristics across the models
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Diversity Within the Models

For example, our analysis of edge CNN models shows: 

1

2

Insight 2: even within each model, layers exhibit 
significant variation in terms of layer characteristics
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Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers
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Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completely 
oblivious to layer heterogeneity

While this approach might work for a specific group of layers, it fails to 
efficiently execute inference across a wide variety of edge models

DRAM
PE Array

B
uf
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Dataflow

Off-chip 
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth
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Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts
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The Cost of Data Movement in Modern CPUs
 In terms of energy costs, data movement dominates 

computation
• 10–50x the energy to move data on-chip than to do a floating-point 

compute
• Almost 1000x to DRAM!

Data movement is a
major bottleneck in
modern systems
• High energy spent on

off-chip  communication
• Pin-limited bandwidth
• High latency
• Identified as the

von Neumann bottleneck
by John Backus in 1977

Source: Dally, keynote at HiPEAC 2015
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Can We Avoid Moving Data Around?
Processing-in-memory (PIM), a.k.a. near-data processing (NDP)

• Add some compute capability to memory
• No need to move data across memory channel

PIM is not a new concept
• First works proposed as early as 1970

(Harold Stone’s Logic-in-Memory Computer)
• Lots of work in the 1990s, but became dormant shortly after
• New memory design innovations are providing new opportunities for PIM

We’ll look at two variants of PIM today

Processing Engine

Memory (DRAM)

long, narrow
Memory Channel

Memory (DRAM) + PIM
ComputeCompute
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PIM Variant 1: Processing-Near-Memory (PNM)

Let’s take advantage of the high internal bandwidth of 3D-
stacked memory
• Chips can have as many as 2K TSVs (essentially vertical wires) internally
• Memory channel has only 64 wires

Discrete logic in either
• Dedicated logic layer inside a 3D-stacked chip
• Separate die connected with high-bandwidth interface to the memory (e.g., 

Si interposer, Intel EMIB)

Memory
Layers

high bandwidth with
Through-Silicon

Vias (TSVs)

we can add small processing engines to the Logic Layer
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PIM Variant 2: Processing-Using-Memory (PUM)

Take advantage of memory technologies that can perform logic
• Many non-volatile memory cells can use analog properties to perform 

bitwise operations
• Can be done in traditional memory technologies (e.g., SRAM, DRAM) 

with additional logic

Little to no additional logic
• Takes advantage of inherent circuit-level properties of memory
• Bandwidth, potential dictated by memory structure (e.g., crosspoint

memory arrays – a 2D grid of memory cells)

CPU

Memory

high-bandwidth
internal compute

Memory Channel
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Mensa-G: Heterogeneous NN Acceleration with PNM
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Mensa Framework

Goal:
Design an edge accelerator that can efficiently run

inference across a wide range of different models and layers

1

2

Instead of running the entire NN model on 
a monolithic accelerator: 

Mensa: a new acceleration framework for edge NN inference
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Mensa High-Level Overview
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Model A

Family 2 Family 3

Edge TPU Accelerator Mensa
B

uf
fe

r

N
oC

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

Model B Model C Model A Model B Model C

Runtime

B
uf

fe
r

N
oC

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

Family 1

Acc. 1
B

uf
fe

r
N

oC

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

Acc. 2

B
uf

fe
r

N
oC

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

Acc. 3

Page 24 of 53



Mensa Runtime Scheduler

Accelerator 
characteristics

Layer 
characteristics

Scheduler

NN model

Layer
Mapping

Software runtime scheduler identifies which accelerator
each layer in an NN model should run on

Generated once
during initial setup 

of a system

Layers tend to group 
together into a small
number of families  

Each of the accelerators 
caters to 

a specific family of layers
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Identifying Layer Families
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Key observation: the majority of layers group into 
a small number of layer families

Family 1

Family 2

Family 3

Family 4

Family 5

Family 1

Family 2

Family 3 Family 4

Family 5

Families 1 & 2: low parameter footprint, high data reuse and MAC intensity 
→ compute-centric layers 

Families 3, 4 & 5: high parameter footprint, low data reuse & MAC intensity 
→ data-centric layers 
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Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators to efficiently 

execute inference across our Google NN models

DRAM32 GB/s

A
ct

. 
B

uf
fe

r
P

ar
am

. 
B

uf
fe

r 32x32
PE Array

Pascal

DRAM
256 GB/s

A
ct

. 
B

uf
fe

r 8x8
PE Array

Pavlov

DRAM
256 GB/s

A
ct

. 
B

uf
fe

r
P

ar
am

. 
B

uf
fe

r 16x16
PE Array

Jacquard

Page 27 of 53



Mensa-G: Mensa for Google Edge Models
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Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator 
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Mensa-G: Mensa for Google Edge Models
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Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator 

Family 3 → LSTM data-centric layers
- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline 
- PNM accelerator 
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Family 3 → LSTM data-centric layers
- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline 
- PNM accelerator 

Mensa-G: Mensa for Google Edge Models
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- 256KB Act. Buffer → 8x Reduction
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- On-chip accelerator 

- 16x16 PE Array → 256 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- 128KB Param. Buffer → 32x Reduction
- PNM accelerator 

Families 4&5 → non-LSTM data-centric layers

Based on key characteristics of families, we design three accelerators to efficiently 
execute inference across our Google NN models
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Energy Analysis

Baseline Google Edge TPU accelerator

Baseline Google Edge TPU accelerator 
using a high-bandwidth off-chip memory 
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Energy Analysis

Mensa-G lowers on-chip/off-chip parameter traffic energy by 
15.3x by scheduling layers on the accelerator with the most 

appropriate dataflow and memory bandwidth

Mensa-G reduces the dynamic energy of the on-chip 
buffer and NoC by 49.8x over Base+HB by avoiding

overprovisioning and catering to specialized dataflows

Mensa-G improves energy efficiency by 3.0x
compared to the baseline Edge TPU
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Throughput Analysis
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Mensa-G improves throughput by 3.1x
compared to the baseline Edge TPU
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More in Our PACT 2021 Paper 

Details about the Mensa Runtime Scheduler
Details about Pascal, Pavlov, and Jacquard’s dataflows
Energy comparison with Eyeriss v2
Mensa-G’s utilization results 
Mensa-G’s inference latency results
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Recall: Two Variants of PIM
Processing Near Memory (PNM)

• Discrete logic in or near
the memory chip

• Commercial examples
» UPMEM PIM–DRAM

Big Data Accelerator
» Samsung Aquabolt-XL

(a.k.a. HBM-PIM, AxDIMM)
» SK hynix GDDR6-AiM

Processing Using Memory (PUM)
• Electrical interactions between

memory cells w/ little additional logic
• Commercial examples

» Mythic Analog Matrix Processor
» IBM Hermes

CPU

Logic Layer

wide channel with
Through-Silicon

Vias (TSVs)Memory
Layers

Memory Channel

CPU

Memory

high-bandwidth
internal compute

Memory Channel
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Exploiting Interactions Between Resistive RAM Cells
Data stored as a resistance

• 1S1R: a selector device in series with
a resistive memory switch

• Resistive switch programmed using localized
thermal events

• Typically organized as a crosspoint array

Example: turning on multiple ReRAM cells at once can perform 
several types of meaningful computation
• Multi-level ReRAM cells can perform dot product, low-precision multiply
• Single-level ReRAM cells can perform NOR, NAND, OR, IMP
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Digital PUM Architectures Enable Bit-Serial Compute
Bit-serial operations

• Perform operations one bit at a time
• Example: ripple-carry add

PUM architectures can perform
many bit-serial functions
• Addition/subtraction
• Content search (like a content-addressable memory, or CAM)

Bit-serial operations incur long latencies
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To compensate for long latencies,
digital PUM architectures compute on whole columns of data

to exploit data-level parallelism



Why Digital and Not Analog?
Analog PUM enables fast matrix multiply

• Store weights as resistance in multi-level ReRAM cells
• Pass in inputs as variable voltages
• Matrix multiply enabled by Kirchhoff ’s current law

Key drawbacks of analog PUM
• Requires ADCs/DACs that convert from/to currents 

for use with other logic
• Non-linearity of device

response makes it difficult
to make multi-level cells
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Image sources:
Shafiee+ ISCA 2016



Issues with ReRAM-Based Digital PUM
The larger the crossbar size, the bigger the throughput

for whole-column operations

Whole-column operations limit the crossbar size
• Each extra cell in a column adds current 

grows proportionally to crossbar size
• Limited by the current carrying capacity of a wire
• Large currents permanently damage the metal wires

(see MICRO 2021 paper for analysis)
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Whole-column operations are realistically possible
only when column length < 200 cells!

How can small tiles deliver high throughput at low overhead?



RACER: Optimizing PUM for Small Memory Tiles
 State-of-the-art processing-using-memory architectures keep

whole chunks of a word in a single tile

 In RACER, we distribute each bit of a word to a different tile
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RACER: Dealing with Bit-Serial Ops Across Tiles
We add 1x64 ReRAM column buffers

• Enables tile-to-tile communication
• Connects to an adjacent tile using pass gates
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Byte Group: Instruction Coordinator for RACER
Core control circuitry for bit-

pipelining

Each bit (i.e., each tile)
repeats the same exact operations

NOR instructions (micro-ops) are 
stored in micro-op queues
• Each tile has a dedicated queue
• Queue i sends its micro-ops to Queue i+1

Enables efficient support of
8-/16-/32-/64-bit operands
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RACER Enables Scalable Edge Computing

Each tile gets 1 bit of a word; pipelined across bits
Cluster: 64 pipelines sharing one set of control/peripheral circuits
Chip can contain however few/many clusters as needed
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So What Can RACER Do With Bit-Serial Compute?
RACER core: pipeline w/ 32 kB of data

• Corresponds to 64 tiles connected w/ buffers
• Each core has local access to data from 512 cores
• Global network gives

each core access to
entire chip’s data
(up to 8 GB)

• Vectorized ISA for
easy programmability

» 64 words at once
» Can support non-bit-

pipelined instructions†
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Methodology
 Iso-area comparisons to four state-of-the-art platforms

• Baseline: 16-core Xeon 8253 CPU + 8GB off-chip DRAM
• eMRAM: 16-core Xeon 8253 CPU + 8GB on-chip MRAM
• RTX-2070: GeForce RTX 2070 GPU
• DC: Duality Cache, a compute-in-SRAM architecture

We model RACER at multiple levels of the stack
• Device-level ReRAM characteristics modeled using VerilogA with

in-house device measurements
• Control and peripheral circuits synthesized using FreePDK 15 nm
• RACER ISA microbenchmarks executed using in-house simulator
• Baseline modeled using MARSSx86 + DRAMSim2 + McPAT

Full paper: 
https://ghose.cs.illinois.edu/papers/21micro_racer.pdf
 Simulation framework open-sourced: 

https://doi.org/10.5281/zenodo.5495803
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71× speedup vs. eMRAM
as embedded memory does not reduce frequent data movement

107× speedup vs. CPU
thanks to RACER’s tile-/pipeline-/cluster-level parallelism

RACER Increases Performance vs. CPU/GPU
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12× speedup vs. GPU
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7× speedup vs. DC (not shown)
thanks to RACER’s in-situ computation and tile-/pipeline-/cluster-level parallelism



RACER Significantly Reduces Energy
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94× savings vs. eMRAM
as embedded memory mostly reduces only the energy used by off-chip network

189× savings vs. CPU
thanks to RACER’s in-situ computation and fast low-power circuitry

17× savings vs. GPU

1.3× savings vs. DC (not shown)
5× savings vs. DC for applications that trigger frequent data swapping



RACER Outperforms Analog Neural Net Accelerators
CASCADE

• State-of-the-art neural network (NN) accelerator [Chou+ MICRO 2019]

• Over an order of magnitude throughput and energy improvements over 
CMOS-based NN accelerator (DaDiaNao)

RACER outperforms CASCADE
• RACER+OSCAR: 3.16x throughput improvement on average
• CASCADE outperforms RACER for sparse matrices
• RACER is better for edge computing: can run many non-NN operations & 

microbenchmarks that CASCADE can’t
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Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts
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Conclusion
 Inference on edge devices is stressing accelerator capabilities

• We think of neural network (NN) models as computationally-intensive
• Edge NN model footprints exceeding the limited storage of accelerators
• We show this with a detailed characterization of Google edge NN models

Processing-in-memory can come to the rescue!
• New memory capabilities can overcome memory channel bottlenecks
• Variants: processing-near-memory (PNM), processing-using-memory (PUM)

Mensa-G: heterogeneous edge NN accelerators using PNM
• 3.1x performance, 3.0x energy improvement vs. Google Edge TPU
• Full paper: Boroumand+ PACT 2021

RACER: data accelerator for edge computing using PUM
• 107x performance, 189x energy improvement vs. 16-core Intel Xeon
• Full papers: Truong+ MICRO 2021, Truong+ JETCAS 2022

Page 51 of 53



Thanks to My Collaborators
 ARCANA Research Group:

https://arcana.cs.illinois.edu/
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