

Using Processing-in-Memory to Accelerate Edge Machine Learning

Saugata Ghose https://ghose.cs.illinois.edu/

FastPath Workshop • October 2, 2022

Executive Summary

Inference on edge devices is stressing accelerator capabilities

- We think of neural network (NN) models as computationally-intensive
- Edge NN model footprints exceeding the limited storage of accelerators
- We show this with a detailed characterization of **Google edge NN models**

Processing-in-memory can come to the rescue!

- New memory capabilities can overcome memory channel bottlenecks
- Variants: processing-near-memory (PNM), processing-using-memory (PUM)

Mensa-G: heterogeneous edge NN accelerators using PNM

- 3.1x performance, 3.0x energy improvement vs. Google Edge TPU
- Full paper: Boroumand+ PACT 2021

RACER: data accelerator for edge computing using PUM

- 107x performance, 189x energy improvement vs. 16-core Intel Xeon
- Full papers: Truong+ MICRO 2021, Truong+ JETCAS 2022

Why Do Machine Learning (ML) on Edge Devices?

Significant interest in pushing ML inference computation directly to edge devices

Γ

Edge devices have limited battery and computation budgets

Limited Power Budget Limited Computational Resources

Specialized accelerators can significantly improve inference latency and energy consumption

Apple Neural Engine (A12)

Myriad of Edge Neural Network Models

Challenge: edge ML accelerators have to execute inference efficiently across a wide variety of NN models

Introduction

Characterizing Edge NN Models Alleviating Data Costs with Processing-in-Memory Mensa-G: Heterogeneous NN Acceleration with PNM **RACER: Edge Data Acceleration with PUM Closing Thoughts**

Edge TPU: Baseline Accelerator

Google Edge NN Models

• We analyze inference execution using 24 edge NN models

The Edge TPU Suffers From Three Major Challenges

- 1. It operates significantly below its peak throughput
- 2. It operates significantly below its peak energy efficiency
- 3. It handles memory accesses inefficiently

Challenge 1: High Resource Underutilization

We find that the accelerator operates significantly below its peak throughput across all models

Challenge 2: Low Energy Efficiency

The accelerator operates far below its upper bound energy efficiency

Page 11 of 53

Challenge 3: Inefficient Memory Access Handling

Parameter traffic (off-chip and on-chip) takes a large portion of the inference energy and execution time

46% and 31% of total energy goes to off-chip parameter traffic and distributing parameters across the PE arrays

The Edge TPU Suffers From Three Major Challenges

- 1. It operates significantly below its peak throughput
- 2. It operates significantly below its peak energy efficiency
- 3. It handles memory accesses inefficiently

Where do these challenges come from?

Insight 1: there is significant variation in terms of layer characteristics across the models

Insight 2: even within each model, layers exhibit significant variation in terms of layer characteristics

For example, our analysis of edge CNN models shows:

Variation in MAC intensity: up to 200x across layers

Variation in FLOP/Byte: up to 244x across layers

Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completely oblivious to layer heterogeneity

Edge accelerators typically take a monolithic approach: equip the accelerator with an over-provisioned <u>PE array</u> and <u>on-chip buffer</u>, a rigid <u>dataflow</u>, and fixed <u>off-chip bandwidth</u>

While this approach might work for a specific group of layers, it fails to efficiently execute inference across a wide variety of edge models

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts

The Cost of Data Movement in Modern CPUs

- In terms of energy costs, data movement dominates computation
 - 10–50x the energy to move data on-chip than to do a floating-point compute
 - Almost 1000x to DRAM!
- Data movement is a major bottleneck in modern systems
 - High energy spent on off-chip communication
 - Pin-limited bandwidth
 - High latency
 - Identified as the
 von Neumann bottleneck
 by John Backus in 1977

][

Can We Avoid Moving Data Around?

Processing-in-memory (PIM), a.k.a. near-data processing (NDP)

- Add some compute capability to memory
- No need to move data across memory channel

PIM is not a new concept

- First works proposed as early as 1970 (Harold Stone's Logic-in-Memory Computer)
- Lots of work in the 1990s, but became dormant shortly after
- New memory design innovations are providing new opportunities for PIM

• We'll look at two variants of PIM today

we can add small processing engines to the Logic Layer

- Let's take advantage of the high internal bandwidth of 3Dstacked memory
 - Chips can have as many as 2K TSVs (essentially vertical wires) internally
 - Memory channel has only 64 wires
- Discrete logic in either
 - Dedicated logic layer inside a 3D-stacked chip
 - Separate die connected with high-bandwidth interface to the memory (e.g., Si interposer, Intel EMIB)

PIM Variant 2: Processing-Using-Memory (PUM)

Take advantage of memory technologies that can perform logic

- Many **non-volatile memory** cells can use analog properties to perform bitwise operations
- Can be done in traditional memory technologies (e.g., SRAM, DRAM) with additional logic

Little to no additional logic

- Takes advantage of inherent circuit-level properties of memory
- Bandwidth, potential dictated by memory structure (e.g., crosspoint memory arrays a 2D grid of memory cells)

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts

Goal:

Design an edge accelerator that can efficiently run inference across a wide range of different models and layers

Instead of running the entire NN model on a monolithic accelerator:

Mensa: a new acceleration framework for edge NN inference

Mensa High-Level Overview

Mensa Runtime Scheduler

Software runtime scheduler identifies *which accelerator* each layer in an NN model should run on

Page 25 of 53

Identifying Layer Families

Key observation: the majority of layers group into a small number of <u>layer families</u>

Families 1 & 2: low parameter footprint, high data reuse and MAC intensity \rightarrow <u>compute-centric layers</u>

Families 3, 4 & 5: high parameter footprint, low data reuse & MAC intensity \rightarrow <u>data-centric layers</u>

Based on key characteristics of families, we design three accelerators to efficiently execute inference across our Google NN models

Based on key characteristics of families, we design three accelerators to efficiently execute inference across our Google NN models

Based on key characteristics of families, we design three accelerators to efficiently execute inference across our Google NN models

Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator

Family 3 → LSTM data-centric layers
8x8 PE Array → 128 GFLOP/s
128KB Act. Buffer → 16x Reduction
No Param. Buffer → 4MB in Baseline

- PNM accelerator

Based on key characteristics of families, we design three accelerators to efficiently execute inference across our Google NN models

<u>Families 4&5</u> \rightarrow non-LSTM data-centric layers

- 16x16 PE Array \rightarrow 256 GFLOP/s
- 128KB Act. Buffer \rightarrow 16x Reduction
- 128KB Param. Buffer \rightarrow 32x Reduction
- PNM accelerator

Energy Analysis

Energy Analysis

Throughput Analysis

Mensa-G improves throughput by 3.1x compared to the baseline Edge TPU

Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand[†]Saugata Ghose[‡]Berkin Akin[§]Ravi Narayanaswami[§]Geraldo F. Oliveira*Xiaoyu Ma[§]Eric Shiu[§]Onur Mutlu*[†]

Carnegie Mellon I UNIVERSITY OF Google ETH Zürich

- Details about the Mensa Runtime Scheduler
- Details about Pascal, Pavlov, and Jacquard's dataflows
- Energy comparison with Eyeriss v2
- Mensa-G's utilization results
- Mensa-G's inference latency results

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts

Recall: Two Variants of PIM

Ι

Processing Near Memory (PNM)

- **Discrete logic** in or near the memory chip
- Commercial examples
 - » UPMEM PIM–DRAM Big Data Accelerator
 - » Samsung Aquabolt-XL (a.k.a. HBM-PIM, AxDIMM)
 - » SK hynix GDDR6-AiM

Processing Using Memory (PUM)

- Electrical interactions between memory cells w/ little additional logic
- Commercial examples
 - » Mythic Analog Matrix Processor
 - » IBM Hermes

Exploiting Interactions Between Resistive RAM Cells

Data stored as a resistance

- 1S1R: a **selector device** in series with a **resistive memory switch**
- Resistive switch programmed using localized thermal events

- Typically organized as a **crosspoint array**
- Example: turning on multiple ReRAM cells at once can perform several types of meaningful computation
 - Multi-level ReRAM cells can perform dot product, low-precision multiply
 - Single-level ReRAM cells can perform NOR, NAND, OR, IMP

Digital PUM Architectures Enable Bit-Serial Compute

Bit-serial operations

- Perform operations one bit at a time
- Example: ripple-carry add
- PUM architectures can perform many bit-serial functions
 - Addition/subtraction

• Content search (like a content-addressable memory, or CAM)

Bit-serial operations incur long latencies

To compensate for long latencies, digital PUM architectures compute on whole columns of data to exploit data-level parallelism

Why Digital and Not Analog?

- Analog PUM enables fast matrix multiply
 - Store weights as resistance in **multi-level ReRAM cells**
 - Pass in inputs as variable voltages
 - Matrix multiply enabled by Kirchhoff's current law
- Key drawbacks of analog PUM
 - **Requires ADCs/DACs** that convert from/to currents for use with other logic
 - Non-linearity of device response makes it difficult to make multi-level cells

Image sources: Shafiee+ ISCA 2016

Issues with ReRAM-Based Digital PUM

- The larger the crossbar size, the bigger the throughput for whole-column operations
- Whole-column operations limit the crossbar size
 - Each extra cell in a column adds current → grows proportionally to crossbar size
 - Limited by the current carrying capacity of a wire
 - Large currents **permanently damage** the metal wires *(see MICRO 2021 paper for analysis)*

Whole-column operations are realistically possible only when column length < 200 cells!

How can small tiles deliver high throughput at low overhead?

RACER: Optimizing PUM for Small Memory Tiles

 State-of-the-art processing-using-memory architectures keep whole chunks of a word in a single tile

In RACER, we distribute each bit of a word to a different tile

RACER: Dealing with Bit-Serial Ops Across Tiles

We add 1x64 ReRAM column buffers

- Enables tile-to-tile communication
- Connects to an adjacent tile using pass gates

- We enable a new technique that we call bit-pipelining
 - Treat each tile as a pipeline stage
 - With *t* tiles, we can operate on *t* columns of words at once

Byte Group: Instruction Coordinator for RACER

- Core control circuitry for bitpipelining
- Each bit (i.e., each tile) repeats the same exact operations
- NOR instructions (micro-ops) are stored in micro-op queues
 - Each tile has a dedicated queue
 - Queue *i* sends its micro-ops to Queue *i*+1
- Enables efficient support of 8-/16-/32-/64-bit operands

RACER Enables Scalable Edge Computing

- Each tile gets 1 bit of a word; pipelined across bits
- Cluster: 64 pipelines sharing one set of control/peripheral circuits
- Chip can contain however few/many clusters as needed

So What Can RACER Do With Bit-Serial Compute?

RACER core: pipeline w/ 32 kB of data

- Corresponds to 64 tiles connected w/ buffers
- Each core has local access to data from 512 cores
- Global network gives each core access to entire chip's data

(up to 8 GB)

• Vectorized ISA for

easy programmability

- » 64 words at once
- » Can support non-bitpipelined instructions[†]

Op.	Description/Notes	Op.	Description/Notes	
Arithmetic Operations				
ADD	Two's complement add	ABS	Absolute value	
SUB	Two's complement subtract	MUX	Multiplex (i.e., choose)	
POPC	Population count	RELU	Rectified linear unit	
CMPEQ	Check equality	LSHIFT	Left shift by 1	
FUZZY	Fuzzy search	RSHIFT	Right shift by 1	
MUL†	Multiply (only 8-/16-/32-bit)	SQRT†	CORDIC square root	
MAC†	Multiply-accumulate	SIN†	CORDIC sine	
DIV†	Division (returns quotient & remainder)	COS†	CORDIC cosine	
MAX	Searches for the maximum number	EXP [†]	CORDIC exponent	
MIN	Searches for the minimum number	CAS	Compare and swap	
Boolean Operations				
NOR	Bitwise NOR	OR	Bitwise OR	
NAND	Bitwise NAND	AND	Bitwise AND	
NOT	Bitwise NOT	XOR	Bitwise XOR	
Data Transfer Operations				
	< MOV buff[dst] = buff[src]>		< SHIFT stride>	
MOV	Moves data stored in buffers of	SHIFT	Parallel data shift	
	core <i>src</i> to buffers of core <i>dst</i>		dst = src + stride	
Configuration Operations				
	< SET start, stop, stride>		Turns off	
SET	Turns on RACER core <i>i</i>	UNSET	all RACER cores	
	for $i \in range(start, stop, stride)$		that are active	

Methodology

Iso-area comparisons to four state-of-the-art platforms

- Baseline: 16-core Xeon 8253 CPU + 8GB off-chip DRAM
- eMRAM: 16-core Xeon 8253 CPU + 8GB on-chip MRAM
- **RTX-2070:** GeForce RTX 2070 GPU
- DC: Duality Cache, a compute-in-SRAM architecture

We model RACER at multiple levels of the stack

- Device-level ReRAM characteristics modeled using VerilogA with in-house device measurements
- Control and peripheral circuits synthesized using FreePDK 15 nm
- RACER ISA microbenchmarks executed using in-house simulator
- Baseline modeled using MARSSx86 + DRAMSim2 + McPAT
- Full paper:

https://ghose.cs.illinois.edu/papers/21micro_racer.pdf

Simulation framework open-sourced: <u>https://doi.org/10.5281/zenodo.5495803</u>

RACER Increases Performance vs. CPU/GPU

$107 \times speedup vs. CPU$

thanks to RACER's tile-/pipeline-/cluster-level parallelism

$71 \times$ speedup vs. eMRAM

as embedded memory does not reduce frequent data movement

 $12 \times$ speedup vs. GPU

7× **speedup vs. DC** (not shown)

thanks to RACER's *in-situ* computation and tile-/pipeline-/cluster-level parallelism

Page 47 of 53

RACER Significantly Reduces Energy

$189 \times savings vs. CPU$

thanks to RACER's in-situ computation and fast low-power circuitry

$94 \times savings vs. eMRAM$

as embedded memory mostly reduces only the energy used by off-chip network

 $17 \times savings vs. GPU$

1.3× savings vs. DC (not shown)

5× savings vs. DC for applications that trigger frequent data swapping

Page 48 of 53

RACER Outperforms Analog Neural Net Accelerators

Ι

• CASCADE

- State-of-the-art neural network (NN) accelerator [Chou+ MICRO 2019]
- Over an order of magnitude throughput *and* energy improvements over CMOS-based NN accelerator (DaDiaNao)

RACER outperforms CASCADE

- RACER+OSCAR: 3.16x throughput improvement on average
- CASCADE outperforms RACER for sparse matrices
- RACER is better for edge computing: can run many non-NN operations & microbenchmarks that CASCADE can't

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts

Conclusion

Inference on edge devices is stressing accelerator capabilities

- We think of neural network (NN) models as computationally-intensive
- Edge NN model footprints exceeding the limited storage of accelerators
- We show this with a detailed characterization of **Google edge NN models**

Processing-in-memory can come to the rescue!

- New memory capabilities can overcome memory channel bottlenecks
- Variants: processing-near-memory (PNM), processing-using-memory (PUM)

Mensa-G: heterogeneous edge NN accelerators using PNM

- 3.1x performance, 3.0x energy improvement vs. Google Edge TPU
- Full paper: Boroumand+ PACT 2021

RACER: data accelerator for edge computing using PUM

- 107x performance, 189x energy improvement vs. 16-core Intel Xeon
- Full papers: Truong+ MICRO 2021, Truong+ JETCAS 2022

Thanks to My Collaborators

 ARCANA Research Group: https://arcana.cs.illinois.edu/ OCODO 	 Amirali Boroumand Minh S. Q. Truong Eric Chen Deanyone Su Alex Glass Ali Hoffmann
 SAFARI Research Group: SAFARI 	 Onur Mutlu Geraldo F. Oliveira Juan Gómez-Luna and many others
 CMU Data Storage Systems Center Image: Content of the system of the system	 James A. Bain L. Richard Carley Marek Skowronski Liting Shen
Supporters of ARCANA's PUM Research	 Scott Center for Energy Innovation Sandia National Laboratories Apple Ph.D. Fellowship for Minh Truong

Using Processing-in-Memory to Accelerate Edge Machine Learning

Saugata Ghose https://ghose.cs.illinois.edu/

FastPath Workshop • October 2, 2022