
Using Processing-in-Memory to
Accelerate Edge Machine Learning

Saugata Ghose
https://ghose.cs.illinois.edu/

FastPath Workshop • October 2, 2022

Executive Summary
 Inference on edge devices is stressing accelerator capabilities

• We think of neural network (NN) models as computationally-intensive
• Edge NN model footprints exceeding the limited storage of accelerators
• We show this with a detailed characterization of Google edge NN models

Processing-in-memory can come to the rescue!
• New memory capabilities can overcome memory channel bottlenecks
• Variants: processing-near-memory (PNM), processing-using-memory (PUM)

Mensa-G: heterogeneous edge NN accelerators using PNM
• 3.1x performance, 3.0x energy improvement vs. Google Edge TPU
• Full paper: Boroumand+ PACT 2021

RACER: data accelerator for edge computing using PUM
• 107x performance, 189x energy improvement vs. 16-core Intel Xeon
• Full papers: Truong+ MICRO 2021, Truong+ JETCAS 2022

Page 2 of 53

Why Do Machine Learning (ML) on Edge Devices?

Significant interest in pushing ML inference computation
directly to edge devices

Privacy LatencyConnectivity Bandwidth

Page 3 of 53

Why Build Specialized ML Accelerators?

Edge devices have limited battery and computation budgets

Limited Power Budget Limited Computational Resources

Specialized accelerators can significantly improve
inference latency and energy consumption

Apple Neural Engine (A12) Google Edge TPU
Page 4 of 53

Myriad of Edge Neural Network Models

Challenge: edge ML accelerators have to execute inference
efficiently across a wide variety of NN models

Face Detection

Speech Recognition

Image Captioning

Language Translation

Page 5 of 53

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts
Page 6 of 53

Edge TPU: Baseline Accelerator

DRAM

ML Model

PE Array

B
uf

fe
r

Dataflow

64x64 array
2TFLOP/s

4MB
on-chip buffer

Output
ActivationParameter

Input
Activation

=*

Page 7 of 53

Google Edge NN Models
We analyze inference execution using 24 edge NN models

Face Detection

Speech Recognition Language Translation

Image Captioning

Google Edge TPU

Page 8 of 53

The Edge TPU Suffers From Three Major Challenges
1. It operates significantly below its peak throughput

2. It operates significantly below its peak
energy efficiency

3. It handles memory accesses inefficiently

Page 9 of 53

Challenge 1: High Resource Underutilization

We find that the accelerator operates significantly below
its peak throughput across all models

0.01

0.1

1

10

0 0 1 10 100 1000

Th
ro

ug
hp

ut
 (T

FL
O

P/
s)

FLOP/Byte

LSTM1
LSTM2
Transducer1
Transducer2
Transducer3
Transducer4
CNN1
CNN2
CNN3
CNN4
CNN5
CNN6
CNN7
CNN8
CNN9
CNN10
CNN11
CNN12
CNN13
RCNN1

CNNs and RCNNs:
only 52.2% of peak throughput

LSTMs and Transducers:
less than 1%

of peak throughput

Peak = 2 TFLOP/s

Page 10 of 53

Challenge 2: Low Energy Efficiency

The accelerator operates far below
its upper bound energy efficiency

0.0001

0.001

0.01

0.1

1

10

0.1 1 10 100 1000 10000

T
FL

O
P

/J

FLOP/Byte

LSTM1
LSTM2
Transducer1
Transducer2
Transducer3
Transducer4
CNN1
CNN2
CNN3
CNN4
CNN5
CNN6
CNN7
CNN8
CNN9
CNN10
CNN11
CNN12
CNN13

Peak = 1.42 TFLOP/J

LSTMs and Transducers:
33.1% of upper bound

energy efficiency

Best CNN model:
50.7% of upper bound

energy efficiency

Page 11 of 53

Challenge 3: Inefficient Memory Access Handling

0

0.25

0.5

0.75

1

LS
T

M
1

LS
T

M
2

T
ra

ns
…

T
ra

ns
…

T
ra

ns
…

T
ra

ns
…

C
N

N
1

C
N

N
2

C
N

N
3

C
N

N
4

C
N

N
5

C
N

N
6

C
N

N
7

C
N

N
8

C
N

N
9

C
N

N
10

C
N

N
11

C
N

N
12

C
N

N
13

LR
C

N
1

LR
C

N
2

LR
C

N
3

N
or

m
al

iz
ed

 E
ne

rg
y

Total Static PE Param. Buffer & NoC
Act. Buffer & NoC Off-chip Interconnect DRAM

Parameter traffic (off-chip and on-chip) takes
a large portion of the inference energy and execution time

46% and 31% of total energy goes to off-chip parameter traffic
and distributing parameters across the PE arrays

Page 12 of 53

The Edge TPU Suffers From Three Major Challenges
1. It operates significantly below its peak throughput

2. It operates significantly below its peak
energy efficiency

3. It handles memory accesses inefficiently

Page 13 of 53

Where do these challenges come from?

Diversity Across the Models
Insight 1: there is significant variation in terms of

layer characteristics across the models

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

FL
O

P
/B

yt
e

Parameter Footprint (MB)

CNN3

CNN4

CNN11

CNN9

CNN13

LSTM1

Layers from
LSTMs and Transducers

Layers from
CNNs and RCNNs

Page 14 of 53

Diversity Within the Models

For example, our analysis of edge CNN models shows:

1

2

Insight 2: even within each model, layers exhibit
significant variation in terms of layer characteristics

0

50

100

150

200

1 11 21 31 41 51

M
A

C
s

(M
)

Layers

CNN5

0

2000

4000

6000

1 11 21 31 41 51 61 71
FL

O
P

/B
yt

e
Layers

CNN13

Variation in FLOP/Byte: up to 244x across layers

Variation in MAC intensity: up to 200x across layers

Page 15 of 53

Root Cause of Accelerator Challenges

The key components of Google Edge TPU are completely
oblivious to layer heterogeneity

While this approach might work for a specific group of layers, it fails to
efficiently execute inference across a wide variety of edge models

DRAM
PE Array

B
uf

fe
r

Dataflow

Off-chip
bandwidth

Edge accelerators typically take a monolithic approach:
equip the accelerator with an over-provisioned PE array and
on-chip buffer, a rigid dataflow, and fixed off-chip bandwidth

Page 16 of 53

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts
Page 17 of 53

The Cost of Data Movement in Modern CPUs
 In terms of energy costs, data movement dominates

computation
• 10–50x the energy to move data on-chip than to do a floating-point

compute
• Almost 1000x to DRAM!

Data movement is a
major bottleneck in
modern systems
• High energy spent on

off-chip communication
• Pin-limited bandwidth
• High latency
• Identified as the

von Neumann bottleneck
by John Backus in 1977

Source: Dally, keynote at HiPEAC 2015

Page 18 of 53

Can We Avoid Moving Data Around?
Processing-in-memory (PIM), a.k.a. near-data processing (NDP)

• Add some compute capability to memory
• No need to move data across memory channel

PIM is not a new concept
• First works proposed as early as 1970

(Harold Stone’s Logic-in-Memory Computer)
• Lots of work in the 1990s, but became dormant shortly after
• New memory design innovations are providing new opportunities for PIM

We’ll look at two variants of PIM today

Processing Engine

Memory (DRAM)

long, narrow
Memory Channel

Memory (DRAM) + PIM
ComputeCompute

Page 19 of 53

PIM Variant 1: Processing-Near-Memory (PNM)

Let’s take advantage of the high internal bandwidth of 3D-
stacked memory
• Chips can have as many as 2K TSVs (essentially vertical wires) internally
• Memory channel has only 64 wires

Discrete logic in either
• Dedicated logic layer inside a 3D-stacked chip
• Separate die connected with high-bandwidth interface to the memory (e.g.,

Si interposer, Intel EMIB)

Memory
Layers

high bandwidth with
Through-Silicon

Vias (TSVs)

we can add small processing engines to the Logic Layer

Page 20 of 53

PIM Variant 2: Processing-Using-Memory (PUM)

Take advantage of memory technologies that can perform logic
• Many non-volatile memory cells can use analog properties to perform

bitwise operations
• Can be done in traditional memory technologies (e.g., SRAM, DRAM)

with additional logic

Little to no additional logic
• Takes advantage of inherent circuit-level properties of memory
• Bandwidth, potential dictated by memory structure (e.g., crosspoint

memory arrays – a 2D grid of memory cells)

CPU

Memory

high-bandwidth
internal compute

Memory Channel

Page 21 of 53

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts
Page 22 of 53

Mensa Framework

Goal:
Design an edge accelerator that can efficiently run

inference across a wide range of different models and layers

1

2

Instead of running the entire NN model on
a monolithic accelerator:

Mensa: a new acceleration framework for edge NN inference

Page 23 of 53

Mensa High-Level Overview

Monolithic Accelerator

Model A

Family 2 Family 3

Edge TPU Accelerator Mensa
B

uf
fe

r

N
oC

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E
P
E
P
E

P
E
P
E
P
E

P
E

P
E

P
E

P
E

Model B Model C Model A Model B Model C

Runtime

B
uf

fe
r

N
oC

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

Family 1

Acc. 1
B

uf
fe

r
N

oC

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

Acc. 2

B
uf

fe
r

N
oC

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
EP

E
P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

P
E

P
EP

E
P
EP

E
P
E

P
EP
EP
E

P
EP
EP
EP

E
P
E

P
E

P
E

Acc. 3

Page 24 of 53

Mensa Runtime Scheduler

Accelerator
characteristics

Layer
characteristics

Scheduler

NN model

Layer
Mapping

Software runtime scheduler identifies which accelerator
each layer in an NN model should run on

Generated once
during initial setup

of a system

Layers tend to group
together into a small
number of families

Each of the accelerators
caters to

a specific family of layers
Page 25 of 53

Identifying Layer Families

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

FL
O

P/
By

te

Parameter Footprint

1

10

100

1000

10000

100000

0.01 1 100
FL

O
P

/B
yt

e
MAC (Millions)

CNN3 CNN4 CNN11 CNN9 CNN13

Key observation: the majority of layers group into
a small number of layer families

Family 1

Family 2

Family 3

Family 4

Family 5

Family 1

Family 2

Family 3 Family 4

Family 5

Families 1 & 2: low parameter footprint, high data reuse and MAC intensity
→ compute-centric layers

Families 3, 4 & 5: high parameter footprint, low data reuse & MAC intensity
→ data-centric layers

Page 26 of 53

Mensa-G: Mensa for Google Edge Models
Based on key characteristics of families, we design three accelerators to efficiently

execute inference across our Google NN models

DRAM32 GB/s

A
ct

.
B

uf
fe

r
P

ar
am

.
B

uf
fe

r 32x32
PE Array

Pascal

DRAM
256 GB/s

A
ct

.
B

uf
fe

r 8x8
PE Array

Pavlov

DRAM
256 GB/s

A
ct

.
B

uf
fe

r
P

ar
am

.
B

uf
fe

r 16x16
PE Array

Jacquard

Page 27 of 53

Mensa-G: Mensa for Google Edge Models

DRAM32 GB/s

A
ct

.
B

uf
fe

r
P

ar
am

.
B

uf
fe

r 32x32
PE Array

Pascal

DRAM
256 GB/s

A
ct

.
B

uf
fe

r 8x8
PE Array

Pavlov

DRAM
256 GB/s

A
ct

.
B

uf
fe

r
P

ar
am

.
B

uf
fe

r 16x16
PE Array

Jacquard

Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator

Page 28 of 53

Based on key characteristics of families, we design three accelerators to efficiently
execute inference across our Google NN models

Mensa-G: Mensa for Google Edge Models

DRAM32 GB/s

A
ct

.
B

uf
fe

r
P

ar
am

.
B

uf
fe

r 32x32
PE Array

Pascal

DRAM
256 GB/s

A
ct

.
B

uf
fe

r 8x8
PE Array

Pavlov

DRAM
256 GB/s

A
ct

.
B

uf
fe

r
P

ar
am

.
B

uf
fe

r 16x16
PE Array

Jacquard

Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator

Family 3 → LSTM data-centric layers
- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline
- PNM accelerator

Page 29 of 53

Based on key characteristics of families, we design three accelerators to efficiently
execute inference across our Google NN models

Family 3 → LSTM data-centric layers
- 8x8 PE Array → 128 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- No Param. Buffer → 4MB in Baseline
- PNM accelerator

Mensa-G: Mensa for Google Edge Models

DRAM32 GB/s

A
ct

.
B

uf
fe

r
P

ar
am

.
B

uf
fe

r 32x32
PE Array

Pascal

DRAM
256 GB/s

A
ct

.
B

uf
fe

r 8x8
PE Array

Pavlov

DRAM
256 GB/s

A
ct

.
B

uf
fe

r
P

ar
am

.
B

uf
fe

r 16x16
PE Array

Jacquard

Families 1&2 → compute-centric layers
- 32x32 PE Array → 2 TFLOP/s
- 256KB Act. Buffer → 8x Reduction
- 128KB Param. Buffer → 32x Reduction
- On-chip accelerator

- 16x16 PE Array → 256 GFLOP/s
- 128KB Act. Buffer → 16x Reduction
- 128KB Param. Buffer → 32x Reduction
- PNM accelerator

Families 4&5 → non-LSTM data-centric layers

Based on key characteristics of families, we design three accelerators to efficiently
execute inference across our Google NN models

0

0.25

0.5

0.75

1
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa

LSTM1 Transd.1Transd.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
or

m
al

iz
ed

 E
ne

rg
y

Total Static PE Param Buffer+NoC
Act Buffer+NoC Off-chip Interconnect DRAM

Energy Analysis

Baseline Google Edge TPU accelerator

Baseline Google Edge TPU accelerator
using a high-bandwidth off-chip memory

Page 31 of 53

0

0.25

0.5

0.75

1
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa
Ba

se
lin

e
Ba

se
+H

B
M

en
sa

Ba
se

lin
e

Ba
se

+H
B

M
en

sa

LSTM1 Transd.1Transd.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
or

m
al

iz
ed

 E
ne

rg
y

Total Static PE Param Buffer+NoC
Act Buffer+NoC Off-chip Interconnect DRAM

Energy Analysis

Mensa-G lowers on-chip/off-chip parameter traffic energy by
15.3x by scheduling layers on the accelerator with the most

appropriate dataflow and memory bandwidth

Mensa-G reduces the dynamic energy of the on-chip
buffer and NoC by 49.8x over Base+HB by avoiding

overprovisioning and catering to specialized dataflows

Mensa-G improves energy efficiency by 3.0x
compared to the baseline Edge TPU

Page 32 of 53

Throughput Analysis

0

2

4

6

8

LSTM1 Trans.1 Trans.2 CNN5 CNN9 CNN10 CNN12 RCNN1 RCNN3 Average

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Base Base+HB Mensa

Mensa-G improves throughput by 3.1x
compared to the baseline Edge TPU

Page 33 of 53

More in Our PACT 2021 Paper

Details about the Mensa Runtime Scheduler
Details about Pascal, Pavlov, and Jacquard’s dataflows
Energy comparison with Eyeriss v2
Mensa-G’s utilization results
Mensa-G’s inference latency results

Page 34 of 53

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts
Page 35 of 53

Recall: Two Variants of PIM
Processing Near Memory (PNM)

• Discrete logic in or near
the memory chip

• Commercial examples
» UPMEM PIM–DRAM

Big Data Accelerator
» Samsung Aquabolt-XL

(a.k.a. HBM-PIM, AxDIMM)
» SK hynix GDDR6-AiM

Processing Using Memory (PUM)
• Electrical interactions between

memory cells w/ little additional logic
• Commercial examples

» Mythic Analog Matrix Processor
» IBM Hermes

CPU

Logic Layer

wide channel with
Through-Silicon

Vias (TSVs)Memory
Layers

Memory Channel

CPU

Memory

high-bandwidth
internal compute

Memory Channel

Page 36 of 53

Exploiting Interactions Between Resistive RAM Cells
Data stored as a resistance

• 1S1R: a selector device in series with
a resistive memory switch

• Resistive switch programmed using localized
thermal events

• Typically organized as a crosspoint array

Example: turning on multiple ReRAM cells at once can perform
several types of meaningful computation
• Multi-level ReRAM cells can perform dot product, low-precision multiply
• Single-level ReRAM cells can perform NOR, NAND, OR, IMP

Page 37 of 53

Columns

Rows

GND
float

1 1

In
pu

t 1

O
ut

pu
t

In
pu

t 2 1

Vnor

0

Vnor

Digital PUM Architectures Enable Bit-Serial Compute
Bit-serial operations

• Perform operations one bit at a time
• Example: ripple-carry add

PUM architectures can perform
many bit-serial functions
• Addition/subtraction
• Content search (like a content-addressable memory, or CAM)

Bit-serial operations incur long latencies

Page 38 of 53

Full
Adder 0

a0 b0

s0

c0Full
Adder 1

a1 b1

s1

c1Full
Adder 2

a2 b2

s2

c2Full
Adder 3

a3 b3

s3

To compensate for long latencies,
digital PUM architectures compute on whole columns of data

to exploit data-level parallelism

Why Digital and Not Analog?
Analog PUM enables fast matrix multiply

• Store weights as resistance in multi-level ReRAM cells
• Pass in inputs as variable voltages
• Matrix multiply enabled by Kirchhoff ’s current law

Key drawbacks of analog PUM
• Requires ADCs/DACs that convert from/to currents

for use with other logic
• Non-linearity of device

response makes it difficult
to make multi-level cells

Page 39 of 53

Image sources:
Shafiee+ ISCA 2016

Issues with ReRAM-Based Digital PUM
The larger the crossbar size, the bigger the throughput

for whole-column operations

Whole-column operations limit the crossbar size
• Each extra cell in a column adds current

grows proportionally to crossbar size
• Limited by the current carrying capacity of a wire
• Large currents permanently damage the metal wires

(see MICRO 2021 paper for analysis)

Page 40 of 53

Whole-column operations are realistically possible
only when column length < 200 cells!

How can small tiles deliver high throughput at low overhead?

RACER: Optimizing PUM for Small Memory Tiles
 State-of-the-art processing-using-memory architectures keep

whole chunks of a word in a single tile

 In RACER, we distribute each bit of a word to a different tile

Page 41 of 53

0 1 1 0
1 1 0 1

0
1

1
0

1
1

0
1

RACER: Dealing with Bit-Serial Ops Across Tiles
We add 1x64 ReRAM column buffers

• Enables tile-to-tile communication
• Connects to an adjacent tile using pass gates

Page 42 of 53

Tile 3 Tile 2 Tile 1 Tile 0

tim
e

We enable a new technique that we
call bit-pipelining
• Treat each tile as a pipeline stage
• With t tiles, we can operate on

t columns of words at once

CA,0

CB,0

CC,0CB,1CA,2

CD,0CC,1CB,2CA,3

C

CA,0

CA,1

C

CA,1

C

CB,0

CCC

CC,0CB,1CA,2

Byte Group: Instruction Coordinator for RACER
Core control circuitry for bit-

pipelining

Each bit (i.e., each tile)
repeats the same exact operations

NOR instructions (micro-ops) are
stored in micro-op queues
• Each tile has a dedicated queue
• Queue i sends its micro-ops to Queue i+1

Enables efficient support of
8-/16-/32-/64-bit operands

Page 43 of 53

M
ic

ro
-O

p
Q

ue
ue

 0

M
ic

ro
-O

p
Q

ue
ue

 1

M
ic

ro
-O

p
Q

ue
ue

 7

New
Instruction

…

Tile
0

Tile
1

Tile
7 …

Byte Group

RACER Enables Scalable Edge Computing

Each tile gets 1 bit of a word; pipelined across bits
Cluster: 64 pipelines sharing one set of control/peripheral circuits
Chip can contain however few/many clusters as needed

Page 44 of 53

Chip
2 MB – 8 GB

…… …

…

…

…

…

Cell
1 bit

…63 1 062 0

…63 1 062 1

…63 1 062 63

…Pipeline/Core

Cluster
2 MB

R/W Circuitry

Pipeline
Selector

63 1 0
…
…

…

… ……

0
1

Tile
512 B

63

I/O
Ctrl.

I/O
Ctrl.

I/O
Ctrl.

I/O
Ctrl.

I/O
Ctrl.

I/O
Ctrl.

63 1 062 …

Pipeline Control Circuitry

So What Can RACER Do With Bit-Serial Compute?
RACER core: pipeline w/ 32 kB of data

• Corresponds to 64 tiles connected w/ buffers
• Each core has local access to data from 512 cores
• Global network gives

each core access to
entire chip’s data
(up to 8 GB)

• Vectorized ISA for
easy programmability

» 64 words at once
» Can support non-bit-

pipelined instructions†

Page 45 of 53

Methodology
 Iso-area comparisons to four state-of-the-art platforms

• Baseline: 16-core Xeon 8253 CPU + 8GB off-chip DRAM
• eMRAM: 16-core Xeon 8253 CPU + 8GB on-chip MRAM
• RTX-2070: GeForce RTX 2070 GPU
• DC: Duality Cache, a compute-in-SRAM architecture

We model RACER at multiple levels of the stack
• Device-level ReRAM characteristics modeled using VerilogA with

in-house device measurements
• Control and peripheral circuits synthesized using FreePDK 15 nm
• RACER ISA microbenchmarks executed using in-house simulator
• Baseline modeled using MARSSx86 + DRAMSim2 + McPAT

Full paper:
https://ghose.cs.illinois.edu/papers/21micro_racer.pdf
 Simulation framework open-sourced:

https://doi.org/10.5281/zenodo.5495803
Page 46 of 53

https://ghose.cs.illinois.edu/papers/21micro_racer.pdf
https://doi.org/10.5281/zenodo.5495803

71× speedup vs. eMRAM
as embedded memory does not reduce frequent data movement

107× speedup vs. CPU
thanks to RACER’s tile-/pipeline-/cluster-level parallelism

RACER Increases Performance vs. CPU/GPU

Page 47 of 53

12× speedup vs. GPU

0.01
0.1

1
10

100
1000

10000

br
ig

ht
ne

ss

rg
b2

gr
ay

m
m

ul

m
vm

ul

pa
ge

ra
nk

df
tS

pa
rs

e

df
tD

en
se

m
an

ha
tt

…

ha
m

m
in

g

le
ne

t5

gr
ep

ex
ac

tM
a…

fu
zz

yM
a…

Ge
o.

 M
ea

n

Baseline RACER-4096 eMRAM RTX-2070
Sp

ee
du

p

G
M

ea
n

fu
zz

yM
at

ch

ex
ac

tM
at

ch

m
an

ha
tt

an

7× speedup vs. DC (not shown)
thanks to RACER’s in-situ computation and tile-/pipeline-/cluster-level parallelism

RACER Significantly Reduces Energy

Page 48 of 53

0.1
1

10
100

1000
10000

br
ig

ht
ne

ss

rg
b2

gr
ay

m
m

ul

m
vm

ul

pa
ge

ra
nk

df
tS

pa
rs

e

df
tD

en
se

m
an

ha
tt

…

ha
m

m
in

g

le
ne

t5

gr
ep

ex
ac

tM
a…

fu
zz

yM
a…

Ge
o.

 M
ea

n

Baseline RACER-4096 eMRAM RTX-2070
Sp

ee
du

p

G
M

ea
n

fu
zz

yM
at

ch

ex
ac

tM
at

ch

m
an

ha
tt

an

94× savings vs. eMRAM
as embedded memory mostly reduces only the energy used by off-chip network

189× savings vs. CPU
thanks to RACER’s in-situ computation and fast low-power circuitry

17× savings vs. GPU

1.3× savings vs. DC (not shown)
5× savings vs. DC for applications that trigger frequent data swapping

RACER Outperforms Analog Neural Net Accelerators
CASCADE

• State-of-the-art neural network (NN) accelerator [Chou+ MICRO 2019]

• Over an order of magnitude throughput and energy improvements over
CMOS-based NN accelerator (DaDiaNao)

RACER outperforms CASCADE
• RACER+OSCAR: 3.16x throughput improvement on average
• CASCADE outperforms RACER for sparse matrices
• RACER is better for edge computing: can run many non-NN operations &

microbenchmarks that CASCADE can’t
Page 49 of 53

0.001
0.01

0.1
1

10
100

mmul mvmul dftSparse dftDense lenet5 geo mean

CASCADE MAGIC NOR MAGIC NAND FELIX OSCAR

Sp
ee

du
p

GMean

Introduction

Characterizing Edge NN Models

Alleviating Data Costs with Processing-in-Memory

Mensa-G: Heterogeneous NN Acceleration with PNM

RACER: Edge Data Acceleration with PUM

Closing Thoughts
Page 50 of 53

Conclusion
 Inference on edge devices is stressing accelerator capabilities

• We think of neural network (NN) models as computationally-intensive
• Edge NN model footprints exceeding the limited storage of accelerators
• We show this with a detailed characterization of Google edge NN models

Processing-in-memory can come to the rescue!
• New memory capabilities can overcome memory channel bottlenecks
• Variants: processing-near-memory (PNM), processing-using-memory (PUM)

Mensa-G: heterogeneous edge NN accelerators using PNM
• 3.1x performance, 3.0x energy improvement vs. Google Edge TPU
• Full paper: Boroumand+ PACT 2021

RACER: data accelerator for edge computing using PUM
• 107x performance, 189x energy improvement vs. 16-core Intel Xeon
• Full papers: Truong+ MICRO 2021, Truong+ JETCAS 2022

Page 51 of 53

Thanks to My Collaborators
 ARCANA Research Group:

https://arcana.cs.illinois.edu/

 SAFARI Research Group:

 CMU Data Storage Systems Center

 Supporters of ARCANA’s
PUM Research

• Amirali Boroumand
• Minh S. Q. Truong
• Eric Chen
• Deanyone Su
• Alex Glass
• Ali Hoffmann

• Onur Mutlu
• Geraldo F. Oliveira
• Juan Gómez-Luna
• … and many others

• James A. Bain
• L. Richard Carley
• Marek Skowronski
• Liting Shen

• Scott Center for Energy Innovation
• Sandia National Laboratories
• Apple Ph.D. Fellowship for Minh Truong

Page 52 of 53

Using Processing-in-Memory to
Accelerate Edge Machine Learning

Saugata Ghose
https://ghose.cs.illinois.edu/

FastPath Workshop • October 2, 2022

	Using Processing-in-Memory to Accelerate Edge Machine Learning
	Executive Summary
	Why Do Machine Learning (ML) on Edge Devices?
	Why Build Specialized ML Accelerators?
	Myriad of Edge Neural Network Models
	Introduction��Characterizing Edge NN Models��Alleviating Data Costs with Processing-in-Memory��Mensa-G: Heterogeneous NN Acceleration with PNM��RACER: Edge Data Acceleration with PUM��Closing Thoughts
	Edge TPU: Baseline Accelerator
	Google Edge NN Models
	The Edge TPU Suffers From Three Major Challenges
	Challenge 1: High Resource Underutilization
	Challenge 2: Low Energy Efficiency
	Challenge 3: Inefficient Memory Access Handling
	The Edge TPU Suffers From Three Major Challenges
	Diversity Across the Models
	Diversity Within the Models
	Root Cause of Accelerator Challenges
	Introduction��Characterizing Edge NN Models��Alleviating Data Costs with Processing-in-Memory��Mensa-G: Heterogeneous NN Acceleration with PNM��RACER: Edge Data Acceleration with PUM��Closing Thoughts
	The Cost of Data Movement in Modern CPUs
	Can We Avoid Moving Data Around?
	PIM Variant 1: Processing-Near-Memory (PNM)
	PIM Variant 2: Processing-Using-Memory (PUM)
	Introduction��Characterizing Edge NN Models��Alleviating Data Costs with Processing-in-Memory��Mensa-G: Heterogeneous NN Acceleration with PNM��RACER: Edge Data Acceleration with PUM��Closing Thoughts
	Mensa Framework
	Mensa High-Level Overview
	Mensa Runtime Scheduler
	Identifying Layer Families
	Mensa-G: Mensa for Google Edge Models
	Mensa-G: Mensa for Google Edge Models
	Mensa-G: Mensa for Google Edge Models
	Mensa-G: Mensa for Google Edge Models
	Energy Analysis
	Energy Analysis
	Throughput Analysis
	More in Our PACT 2021 Paper
	Introduction��Characterizing Edge NN Models��Alleviating Data Costs with Processing-in-Memory��Mensa-G: Heterogeneous NN Acceleration with PNM��RACER: Edge Data Acceleration with PUM��Closing Thoughts
	Recall: Two Variants of PIM
	Exploiting Interactions Between Resistive RAM Cells
	Digital PUM Architectures Enable Bit-Serial Compute
	Why Digital and Not Analog?
	Issues with ReRAM-Based Digital PUM
	RACER: Optimizing PUM for Small Memory Tiles
	RACER: Dealing with Bit-Serial Ops Across Tiles
	Byte Group: Instruction Coordinator for RACER
	RACER Enables Scalable Edge Computing
	So What Can RACER Do With Bit-Serial Compute?
	Methodology
	RACER Increases Performance vs. CPU/GPU
	RACER Significantly Reduces Energy
	RACER Outperforms Analog Neural Net Accelerators
	Introduction��Characterizing Edge NN Models��Alleviating Data Costs with Processing-in-Memory��Mensa-G: Heterogeneous NN Acceleration with PNM��RACER: Edge Data Acceleration with PUM��Closing Thoughts
	Conclusion
	Thanks to My Collaborators
	Using Processing-in-Memory to Accelerate Edge Machine Learning

