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Motivations

• Data science algorithms, approaches, and frameworks are 
quickly evolving

• Domain-specific accelerators are the only possible 
approach to keep increasing performance in tight  
constraints 

• Existing accelerators start from specific models (i.e., mostly 
deep neural networks) or only try to accelerate specific 
computational patterns coming from high-level frameworks

• Designing hardware by hand is complex and time-
consuming

• Depending on the application, a designer may want to 
explore performance, area, energy, accuracy, and more…

• Need tools to quickly transition from formulation of an 
algorithm to the accelerator implementation and 
explore the accelerator design along different 
dimensions

LeNet architecture from the original paper
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SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible, 
open-source hardware compiler from high-
level programming frameworks to silicon

• Compiler-based frontend, leveraging the 
MultiLevel Intermediate Representation (MLIR)

• Compiler-based backend, leveraging state-of-
the-art High-Level Synthesis (HLS) techniques

• Generates synthesizable Verilog for a variety of 
targets, from Field Programmable Gate Arrays 
(FPGAs) to Application Specific Integrated 
Circuits (ASICs)

• Optimizations at all levels are performed as 
compiler optimization passes

Translate to MLIR IR
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[Marco Minutoli, Vito Giovanni Castellana, Cheng Tan, Joseph B. 
Manzano, Vinay Amatya, Antonino Tumeo, David Brooks, Gu-Yeon 
Wei: SODA: a New Synthesis Infrastructure for Agile Hardware 
Design of Machine Learning Accelerators. ICCAD 2020: 98:1-98:7]

[Jeff Jun Zhang, Nicolas Bohm Agostini, Shihao Song, Cheng Tan, 
Ankur Limaye, Vinay Amatya, Joseph B. Manzano, Marco Minutoli, 
Vito Giovanni Castellana, Antonino Tumeo, Gu-Yeon Wei, David 
Brooks: Towards Automatic and Agile AI/ML Accelerator Design with 
End-to-End Synthesis. ASAP 2021: 218-225]

[N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, G-Y. Wei, D. 
Brooks, A. Tumeo: Bridging Python to Silicon: The SODA Toolchain. IEEE Micro Magazine, Sept/Oct 2022.]
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SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend 
optimizer “generates” the SODA High-Level IR

• Employs and embraces the MLIR framework
§ MLIR: Multi-Level Intermediate Representation
§ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others
§ Several architecture independent dialects (Linalg, Affine, 

SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR 
“bridges” (e.g., libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:
§ Identify dataflow segments for hardware generation
§ Perform high-level optimizations (dataflow transformations, 

data-level and instruction-level parallelism extraction)
§ Generate interfacing code and runtime calls for 

microcontroller

SODA-OPT: System Overview
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Translate to LLVM IR

https://gitlab.pnnl.gov/sodalite/soda-opt

[N. Bohm Agostini, D. Kaeli, A. Tumeo: SODA-OPT: System-Level Design in MLIR for HLS. SC 21 Poster]

[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-
based Compiler Flow for System-Level Design and Hardware Acceleration. To appear at ICCAD 2022]

https://gitlab.pnnl.gov/sodalite/soda-opt
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SODA Synthesizer: HLS Backend

• The synthesizer backend take as input the properly 
optimized low-level IR and generate the hardware 
descriptions of the accelerators
§ SODA supports an open-souce HLS backend, PandA-

Bambu, and a the commercial AMD/Xilinx Vitis HLS

• PandA-Bambu is an open-source state-state-of-
the-art high-level synthesis (HLS)
§ Unique features include parallel accelerator designs,

modular HLS, and ASIC support
§ Provides automated testing and verification of the 

generated designs

https://panda.dei.polimi.it
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[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli, 
Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of 
Complex Applications. DAC 2021: 1327-1330]
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Why an HLS Backend?

• Provides the necessary generality to deal with novel algorithms
• Provides opportunities for specialized and optimized templates by 

recognizing specific computational patterns

• The SODA Approach relies on progressive lowerings of compiler 
intermediate representations (IRs), rather than rewriting annotated C/C++
§ Reduces semantic mismatches between high-level and low-level descriptions
§ Provides further opportunities to apply optimizations at the right level of abstraction

• New optimizations as additional compiler passes
• Design space exploration formulated as a compiler optimization problem
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SODA Synthesizer: ASIC targets
• The multi-level approach of the SODA toolchain allows 

supporting different target technologies (FPGA, ASIC) for 
actual generation of the designs

• ASIC targets:
• Commercial Tools (Synopsys Design Compiler with 

Global Foundries 12/14 nm cells)
• OpenROAD suite (OpenPDK 45nm and ASAP 7nm 

cell libraries)

• Backend’ resources characterized for the target technology: 
• Eucalyptus tool in Bambu, allows driving hardware 

synthesis algorithms to optimize for area, latency, etc.

• PandA-Bambu now also the opensource C frontend for 
ZeroASIC’ SIliconCompiler
(https://www.siliconcompiler.com)

SODA characterization flow. The characterization flow can be 
extended to synthesize HLS generated designs, or used to estimate 
their area-latency-power profiles to drive the Design Space 
Exploration engine

https://theopenroadproject.org

https://www.siliconcompiler.com/
https://theopenroadproject.org/
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SODA-Opt Optimization Passes

• SODA-Opt provides passes to: Search, Outline, Isolate, Optimize,  
Dispatch and Accelerate kernels for the hardware synthesis backend

• SODA-Opt defines the SODA dialect to perform search and outlining of 
the kernels to accelerate

• SODA-Opt performs high-level optimizations for high-level synthesis
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Examples of generated accelerators

• PolyBench kernels
• Outperforming 

state-of-the-art HLS 
tools and frontends

Tools:
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[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-based Compiler Flow for System-Level Design and Hardware Acceleration. To appear at 
ICCAD 2022]



10

Benefits of high-level optimizations

• Matrix multiplication kernel with different input sizes
• Optimization passes in SODA-OPT prepare the input IR for Bambu exposing more 

parallelism (loop permutation, loop unrolling, accumulation on temporary buffers)
• Even greater effect when combined with low-level HLS optimizations
• Significant impact on the performance of the generated accelerators

Without Bambu optimizations With Bambu optimizations



11

From Python to optimized ASIC

• LeNet example
• Each of the operator is 

synthesized to an ASIC 
accelerator

• SODA-Opt optimized 
accelerators are bigger, but also 
much faster

LeNet architecture from the original paper
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Research Opportunities: System-Level Design
• Integrating with open-source fast 

prototyping platforms: Columbia University 
Embedded Scalable Platforms (ESP)

• SODA-OPT
• MLIR is naturally modular and 

hierarchical
• Can lower to multiple targets, including 

runtimes
• A more comprehensive tool than 

HLS4ML
• Bambu

• Provides a fully open-source HLS 
backend for ESP 

• Enables end-to-end fast prototyping from 
algorithmic concept to system 
implementation
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Research Opportunities: Profile Driven Synthesis

• A multi-level compiler 
infrastructure provides static 
analysis

• A compiler infrastructure provides 
opportunities to implement 
dynamic analysis through 
automated instrumentation and 
profiling
§ E.g., capturing data-dependent 

patterns and memory transactions
§ Information can be feed back to the 

hardware generation engine to 
facilitate exploration of the memory 
and the overall architecture design [A. Tumeo: Architecture independent integrated early performance and energy 

estimation. IGSC 2017: 1-6]
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Research Opportunities: Support for Spiking 
Neural Networks

• Extend the SODA 
approach to Spiking 
Neural Networks
§ Integration with  Drexel’s 

NeuroXplore framework

• Defined a new MLIR 
dialect to perform 
conversion from ANN to 
SNN

• The SODA framework 
then allows mapping to 
(synthesized) digital 
neurons

[S. Curzel et al., "Automated Generation of Integrated Digital and Spiking Neuromorphic Machine Learning 
Accelerators," ICCAD 2021]

[Spiking Neural Network implementation]
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Public Software Repositories

• SODA frontend: https://gitlab.pnnl.gov/sodalite/soda-frontend
• SODA-Opt: https://gitlab.pnnl.gov/sodalite/soda-opt
• Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 0.9.7)
• OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA 

toolchain to achieve end-to-end synthesis to ASIC in a fully opensource 
compiler toolchain)

• SiliconCompiler: https://siliconcompiler.com (external tool developed by 
ZeroASIC, Bambu has been included as a frontend from C/C++)

https://gitlab.pnnl.gov/sodalite/soda-frontend
https://gitlab.pnnl.gov/sodalite/soda-opt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://siliconcompiler.com/
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Conclusions

• SODA implements an end-to-end (high-level frameworks to silicon) compiler-based 
toolchain for the generation of domain-specific accelerators

§ Modular, multi-level, extensible
§ All based on interoperating open-source technologies
§ Targets reconfigurable architectures FPGAs as well ASICs
§ Consider specialization and partial dynamic reconfiguration as key optimization metrics
§ Considers system-level implications
§ Enables automated design space exploration and agile hardware design 

• The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic 
formulation to hardware implementation for complex workloads



Thank you
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