
SODA: An End-To-End
Open-Source Hardware

Compiler for Machine
Learning Accelerators

Nicolas Bohm Agostini, Serena Curzel, Ankur Limaye
Vinay Amatya, Marco Minutoli, Vito Giovanni Castellana

Joseph Manzano, Fabrizio Ferrandi, Antonino Tumeo

October 12, 2022

Antonino Tumeo

Chief Scientist, High Performance Computing Group

2

Motivations

• Data science algorithms, approaches, and frameworks are
quickly evolving

• Domain-specific accelerators are the only possible
approach to keep increasing performance in tight
constraints

• Existing accelerators start from specific models (i.e., mostly
deep neural networks) or only try to accelerate specific
computational patterns coming from high-level frameworks

• Designing hardware by hand is complex and time-
consuming

• Depending on the application, a designer may want to
explore performance, area, energy, accuracy, and more…

• Need tools to quickly transition from formulation of an
algorithm to the accelerator implementation and
explore the accelerator design along different
dimensions

LeNet architecture from the original paper

3

SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible,
open-source hardware compiler from high-
level programming frameworks to silicon

• Compiler-based frontend, leveraging the
MultiLevel Intermediate Representation (MLIR)

• Compiler-based backend, leveraging state-of-
the-art High-Level Synthesis (HLS) techniques

• Generates synthesizable Verilog for a variety of
targets, from Field Programmable Gate Arrays
(FPGAs) to Application Specific Integrated
Circuits (ASICs)

• Optimizations at all levels are performed as
compiler optimization passes

Translate to MLIR IR

Backend:
HLS

Frontend:
SODA-OPT

Synthesizer

Design Space
Exploration

Templates

Components

FPGA or ASIC Targets

Constraints

Resource Library

Metrics

High-Level
Framework ML Model

Chip Design

DSL

Evaluation

Executable

Processor

LLVM Tools

[Marco Minutoli, Vito Giovanni Castellana, Cheng Tan, Joseph B.
Manzano, Vinay Amatya, Antonino Tumeo, David Brooks, Gu-Yeon
Wei: SODA: a New Synthesis Infrastructure for Agile Hardware
Design of Machine Learning Accelerators. ICCAD 2020: 98:1-98:7]

[Jeff Jun Zhang, Nicolas Bohm Agostini, Shihao Song, Cheng Tan,
Ankur Limaye, Vinay Amatya, Joseph B. Manzano, Marco Minutoli,
Vito Giovanni Castellana, Antonino Tumeo, Gu-Yeon Wei, David
Brooks: Towards Automatic and Agile AI/ML Accelerator Design with
End-to-End Synthesis. ASAP 2021: 218-225]

[N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, G-Y. Wei, D.
Brooks, A. Tumeo: Bridging Python to Silicon: The SODA Toolchain. IEEE Micro Magazine, Sept/Oct 2022.]

4

SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend
optimizer “generates” the SODA High-Level IR

• Employs and embraces the MLIR framework
§ MLIR: Multi-Level Intermediate Representation
§ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others
§ Several architecture independent dialects (Linalg, Affine,

SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR
“bridges” (e.g., libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:
§ Identify dataflow segments for hardware generation
§ Perform high-level optimizations (dataflow transformations,

data-level and instruction-level parallelism extraction)
§ Generate interfacing code and runtime calls for

microcontroller

SODA-OPT: System Overview

MLIR: Linalg and Affine Dialects

Search & Outline kernel functions

Isolate Kernel & Host Code

MLIR and SODA Dialects

Analysis &
high-level

optimization

Convert SODA
Operations to

Runtime

Low-Level IR Low-Level IR

MLIR Kernel
Code

MLIR Host
Code

Frontend: SODA-OPT

From: High-Level Framework

To: Backend To: LLVM Tools

Translate to LLVM IR

https://gitlab.pnnl.gov/sodalite/soda-opt

[N. Bohm Agostini, D. Kaeli, A. Tumeo: SODA-OPT: System-Level Design in MLIR for HLS. SC 21 Poster]

[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-
based Compiler Flow for System-Level Design and Hardware Acceleration. To appear at ICCAD 2022]

https://gitlab.pnnl.gov/sodalite/soda-opt

5

SODA Synthesizer: HLS Backend

• The synthesizer backend take as input the properly
optimized low-level IR and generate the hardware
descriptions of the accelerators
§ SODA supports an open-souce HLS backend, PandA-

Bambu, and a the commercial AMD/Xilinx Vitis HLS

• PandA-Bambu is an open-source state-state-of-
the-art high-level synthesis (HLS)
§ Unique features include parallel accelerator designs,

modular HLS, and ASIC support
§ Provides automated testing and verification of the

generated designs

https://panda.dei.polimi.it

Analysis & low-level optimization

Template
based

synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog and Testbench

Backend: HLS

From: Frontend

To: Chip Design

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli,
Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of
Complex Applications. DAC 2021: 1327-1330]

6

Why an HLS Backend?

• Provides the necessary generality to deal with novel algorithms
• Provides opportunities for specialized and optimized templates by

recognizing specific computational patterns

• The SODA Approach relies on progressive lowerings of compiler
intermediate representations (IRs), rather than rewriting annotated C/C++
§ Reduces semantic mismatches between high-level and low-level descriptions
§ Provides further opportunities to apply optimizations at the right level of abstraction

• New optimizations as additional compiler passes
• Design space exploration formulated as a compiler optimization problem

7

SODA Synthesizer: ASIC targets
• The multi-level approach of the SODA toolchain allows

supporting different target technologies (FPGA, ASIC) for
actual generation of the designs

• ASIC targets:
• Commercial Tools (Synopsys Design Compiler with

Global Foundries 12/14 nm cells)
• OpenROAD suite (OpenPDK 45nm and ASAP 7nm

cell libraries)

• Backend’ resources characterized for the target technology:
• Eucalyptus tool in Bambu, allows driving hardware

synthesis algorithms to optimize for area, latency, etc.

• PandA-Bambu now also the opensource C frontend for
ZeroASIC’ SIliconCompiler
(https://www.siliconcompiler.com)

SODA characterization flow. The characterization flow can be
extended to synthesize HLS generated designs, or used to estimate
their area-latency-power profiles to drive the Design Space
Exploration engine

https://theopenroadproject.org

https://www.siliconcompiler.com/
https://theopenroadproject.org/

8

SODA-Opt Optimization Passes

• SODA-Opt provides passes to: Search, Outline, Isolate, Optimize,
Dispatch and Accelerate kernels for the hardware synthesis backend

• SODA-Opt defines the SODA dialect to perform search and outlining of
the kernels to accelerate

• SODA-Opt performs high-level optimizations for high-level synthesis

9

Examples of generated accelerators

• PolyBench kernels
• Outperforming

state-of-the-art HLS
tools and frontends

Tools:

FP
G
A AS

IC

FPGA
ASIC

0.10

1.00

10.00

100.00

1000.00

2mm 3mm atax bicg doitgen gemm gemver gesummv mvt symm syr2k syrkAv
er

ag
e

of
 S

pe
ed

up
s

O
ve

r B
am

bu
(F

:F
PG

A
or

 A
:A

SI
C

)

(F) Vivado HLS

(F) ScaleHLS+Vivado HLS

(F) Vitis HLS

(F) Our Tool + Vitis HLS

(F) Our Tool + Bambu

(A) Our Tool + Bambu

[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-based Compiler Flow for System-Level Design and Hardware Acceleration. To appear at
ICCAD 2022]

10

Benefits of high-level optimizations

• Matrix multiplication kernel with different input sizes
• Optimization passes in SODA-OPT prepare the input IR for Bambu exposing more

parallelism (loop permutation, loop unrolling, accumulation on temporary buffers)
• Even greater effect when combined with low-level HLS optimizations
• Significant impact on the performance of the generated accelerators

Without Bambu optimizations With Bambu optimizations

11

From Python to optimized ASIC

• LeNet example
• Each of the operator is

synthesized to an ASIC
accelerator

• SODA-Opt optimized
accelerators are bigger, but also
much faster

LeNet architecture from the original paper

12

Research Opportunities: System-Level Design
• Integrating with open-source fast

prototyping platforms: Columbia University
Embedded Scalable Platforms (ESP)

• SODA-OPT
• MLIR is naturally modular and

hierarchical
• Can lower to multiple targets, including

runtimes
• A more comprehensive tool than

HLS4ML
• Bambu

• Provides a fully open-source HLS
backend for ESP

• Enables end-to-end fast prototyping from
algorithmic concept to system
implementation

13

Research Opportunities: Profile Driven Synthesis

• A multi-level compiler
infrastructure provides static
analysis

• A compiler infrastructure provides
opportunities to implement
dynamic analysis through
automated instrumentation and
profiling
§ E.g., capturing data-dependent

patterns and memory transactions
§ Information can be feed back to the

hardware generation engine to
facilitate exploration of the memory
and the overall architecture design [A. Tumeo: Architecture independent integrated early performance and energy

estimation. IGSC 2017: 1-6]

14

Research Opportunities: Support for Spiking
Neural Networks

• Extend the SODA
approach to Spiking
Neural Networks
§ Integration with Drexel’s

NeuroXplore framework

• Defined a new MLIR
dialect to perform
conversion from ANN to
SNN

• The SODA framework
then allows mapping to
(synthesized) digital
neurons

[S. Curzel et al., "Automated Generation of Integrated Digital and Spiking Neuromorphic Machine Learning
Accelerators," ICCAD 2021]

[Spiking Neural Network implementation]

15

Public Software Repositories

• SODA frontend: https://gitlab.pnnl.gov/sodalite/soda-frontend
• SODA-Opt: https://gitlab.pnnl.gov/sodalite/soda-opt
• Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 0.9.7)
• OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA

toolchain to achieve end-to-end synthesis to ASIC in a fully opensource
compiler toolchain)

• SiliconCompiler: https://siliconcompiler.com (external tool developed by
ZeroASIC, Bambu has been included as a frontend from C/C++)

https://gitlab.pnnl.gov/sodalite/soda-frontend
https://gitlab.pnnl.gov/sodalite/soda-opt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://siliconcompiler.com/

16

Conclusions

• SODA implements an end-to-end (high-level frameworks to silicon) compiler-based
toolchain for the generation of domain-specific accelerators

§ Modular, multi-level, extensible
§ All based on interoperating open-source technologies
§ Targets reconfigurable architectures FPGAs as well ASICs
§ Consider specialization and partial dynamic reconfiguration as key optimization metrics
§ Considers system-level implications
§ Enables automated design space exploration and agile hardware design

• The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic
formulation to hardware implementation for complex workloads

Thank you

17

